Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper describes a remotely monitored buoy that, when deployed in open water prior to freeze up, permits scientists to monitor not only temperature with depth, and hence freeze up and sea ice thickness, but also the progression of sea ice development—e.g., the extent of cover at a given depth as it grows (solid fraction), the brine volume of the ice, and the salinity of the water just below, which is driven by brine expulsion. Microstructure and In situ Salinity and Temperature (MIST) buoys use sensor “ladders” that, in our prototypes, extend to 88 cm below the surface. We collected hourly measurements of surface air temperature and water temperature and electrical impedance every 3 cm to track the seasonal progression of sea ice growth in Elson Lagoon (Utqiaġvik, Alaska) over the 2017/18 ice growth season. The MIST buoy has the potential to collect detailed sea ice microstructural information over time and help scientists monitor all parts of the growth/melt cycle, including not only the freezing process but the effects of meteorological changes, changing snow cover, the interaction of meltwater, and drainage. Significance Statement There is a need to better understand how an increasing influx of freshwater, one part of a changing Arctic climate, will affect the development of sea ice. Current instruments can provide information on the growth rate, extent, and thickness of sea ice, but not direct observations of the structure of the ice during freeze up, something that is tied to salinity and local air and water temperature. A first deployment in Elson Lagoon in Utqiaġvik, Alaska, showed promising results; we observed fluctuations in ice temperatures in response to brief warmings in air temperature that resulted in changes in the conductivity, liquid fraction, and brine volume fraction within the ice.more » « less
-
The geographic settings and interests of diverse groups of rights- and stakeholders figure prominently in the need for internationally coordinated Arctic observing systems. Global and regional observing systems exist to coordinate observations across sectors and national boundaries, leveraging limited resources into widely available observational data and information products. Observing system design and coordination approaches developed for more focused networks at mid- and low latitudes are not necessarily directly applicable in more complex Arctic settings. Requirements for the latter are more demanding because of a greater need for cross-disciplinary and cross-sectoral prioritization and refinement from the local to the pan-Arctic scale, in order to maximize the use of resources in challenging environmental settings. Consideration of Arctic Indigenous Peoples’s observing priorities and needs has emerged as a core tenet of governance and coordination frameworks. We evaluate several different types of observing systems relative to the needs of the Arctic observing community and information users to identify the strengths and weaknesses of each framework. A typology of three approaches emerges from this assessment: “essential variable,” “station model,” and “central question.” We define and assess, against the requirements of Arctic settings, the concept of shared Arctic variables (SAVs) emerging from the Arctic Observing Summit 2020 and prior work by the Sustaining Arctic Observing Networks Road Mapping Task Force. SAVs represent measurable phenomena or processes that are important enough to multiple communities and sectors to make the effort to coordinate observation efforts worthwhile. SAVs align with essential variables as defined, for example, by global observing frameworks, in that they guide coordinated observations across processes that are of interest to multiple sectors. SAVs are responsive to the information needs of Arctic Indigenous Peoples and draw on their capacity to codesign and comanage observing efforts. SAVs are also tailored to accommodate the logistical challenges of Arctic operations and address unique aspects of the Arctic environment, such as the central role of the cryosphere. Specific examples illustrate the flexibility of the SAV framework in reconciling different observational approaches and standards such that the strengths of global and regional observing programs can be adapted to the complex Arctic environment.more » « less
-
Arctic observing and data systems have been widely recognized as critical infrastructures to support decision making and understanding across sectors in the Arctic and globally. Yet due to broad and persistent issues related to coordination, deployment infrastructure and technology gaps, the Arctic remains among the most poorly observed regions on the planet from the standpoint of conventional observing systems. Sustaining Arctic Observing Networks (SAON) was initiated in 2011 to address the persistent shortcomings in the coordination of Arctic observations that are maintained by its many national and organizational partners. SAON set forth a bold vision in its 2018 – 28 strategic plan to develop a roadmap for Arctic observing and data systems (ROADS) to specifically address a key gap in coordination efforts—the current lack of a systematic planning mechanism to develop and link observing and data system requirements and implementation strategies in the Arctic region. This coordination gap has hampered partnership development and investments toward improved observing and data systems. ROADS seeks to address this shortcoming through generating a systems-level view of observing requirements and implementation strategies across SAON’s many partners through its roadmap. A critical success factor for ROADS is equitable participation of Arctic Indigenous Peoples in the design and development process, starting at the process design stage to build needed equity. ROADS is both a comprehensive concept, building from a societal benefit assessment approach, and one that can proceed step-wise so that the most imperative Arctic observations—here described as shared Arctic variables (SAVs)—can be rapidly improved. SAVs will be identified through rigorous assessment at the beginning of the ROADS process, with an emphasis in that assessment on increasing shared benefit of proposed system improvements across a range of partnerships from local to global scales. The success of the ROADS process will ultimately be measured by the realization of concrete investments in and well-structured partnerships for the improved sustainment of Arctic observing and data systems in support of societal benefit.more » « less
An official website of the United States government
